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a b s t r a c t

The diseases causing the highest ecological and socio-economical impacts in European farmed finfish are
produced by RNA viruses. Salmon, trout, sea bream, sea bass, carp and turbot, suffer viral nervous necro-
sis produced by betanodaviruses (VNNV), infectious pancreatic necrosis produced by aquabirnaviruses
(IPNV), viral haemorrhagic septicemia (VHSV) and infectious haematopoietic necrosis (IHNV) produced
by novirhabdoviruses, spring viremia of carp produced by vesicular-like rhabdoviruses (SVCV), salmon pan-
creas disease and trout sleeping disease produced by alphaviruses (SAV) and infectious salmon anaemia
produced by isaviruses (ISAV). There are not yet any effective treatments other than destroying all fish
in infected farms, avoiding fish movements to and from infected areas and, in some particular cases,
vaccination. The comparative study of the molecular characteristics of those RNA viruses and the state
of knowledge of their vaccines, point to the development of new DNA vaccines for some RNA viruses,
design of new mass delivery methods, maternal transfer of immunity, more extensive crossprotection
studies between genotypes, use of safer all-fish plasmid control elements and study of DNA plasmid
distribution after vaccination, as some of the major gaps that need urgent filling. In addition, to obtain
similar protection levels to those produced by viral infections in survivors, live attenuated and/or some
oil-adjuvanted inactivated virus vaccines, molecular adjuvants and/or other viral components (dsRNA or
viral proteins interfering with fish defences), might have to be included in new DNA vaccine formula-
tions. Furthermore, to be approved by the corresponding European authorities, fish viral DNA vaccines
would also require the study of the persistence in fish of the introduced DNA, their possible impact to
the aquatic environment and the acceptance of potential consumers.

© 2011 Elsevier Ltd. All rights reserved.
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Fig. 1. Relative production during recent years of European farmed finfish species,
data from the Federation of European Fish Producers (FEAP), published in their Aqua-
media web page (http://www.aquamedia.org). Production levels and rates of other
finfish species are much lower (not shown). (�) Salmon; (�) trout; (�) carps; (©)
sea bream; (�) sea bass; (♦) turbot.

1. Major European diseases affecting farmed finfish caused
by RNA viruses

The most important finfish production by European aquacul-
ture involves 6 fish species (Fig. 1) distributed among different
geographical locations (Fig. 2). Thus during the last ∼10 years the
highest annual productions were of Atlantic salmon Salmo salar
(∼900 kt/year), rainbow trout Oncorhynchus mykiss (∼320 kt/year),
sea bream Sparus aurata (∼150 kt/year), sea bass Dicentrarchus

IPNV/salmon

ISAV/salmon

VHSV/trout-turbot
SVCV/carp

NNV/sea bass

sea bream

SAV/salmon-trout

Fig. 2. Approximated geographical distribution of viral diseases of European farmed
finfish. The main viruses and the finfish species affected are: VNNV (sea bream and
sea bass), IPNV (salmon), VHSV and IHNV (trout and salmon), SVCV (carps), SAV
(salmon and trout) and ISAV (salmon).

labrax (∼140 kt/year), carp Cyprinus carpio (∼70 kt/year) and tur-
bot Scophthalmus maximus (∼10 kt/year). While the production of
salmon, trout and carps remains stabilized, the production of sea
bass, sea bream and turbot shows a tendency to continue their
growth (Fig. 1). Finfish production levels and/or their rates of
growth serve for an approximated estimation of the relative eco-
logical and socio-economic impacts of the viral diseases they suffer.
Because of the high-mortality viral diseases cause in farmed finfish,
and the lack of specific treatments or practical prevention methods
such as vaccines, many of those diseases are notifiable to the OIE
(Office International des Epizooties) (http://www.oie.int) and/or to
the European Union [1].

Viral diseases of finfish are spreading with time as suggested
by the increasing number of outbreaks in farms during the last
years. Furthermore, in some cases, the same viral diseases have
been detected on captured wild finfish species other than those
being farmed [2,3]. The most important viral diseases affect-
ing the European farmed finfish species are caused by different
genuses, belonging to 6 different families (Table 1). Thus, these
viruses distribute among the following genuses and fish: betano-
davirus (affecting sea bream and sea bass), aquabirnavirus (affecting
most finfish species in their juvenile stages and causing severe
losses during Atlantic salmon release from fresh to ocean water),
novirhabdovirus (affecting mostly to trout but spreading to more
than 50 other finfish species), vesiculo-like rhabdovirus (affecting
carps), alphavirus (affecting salmon and trout) and isavirus (affect-
ing salmon). These viruses have either a single (+ sense or −
antisense) or double stranded RNA genome, of 5–14 kb of length
present in 1–8 different RNA molecules, and coding for 2–10 dif-
ferent proteins. With respect to the sequence variation of their
specific genes, they have 3–9 genotypes as identified by phyloge-
netic groupings within each viral specie (Table 1). Most relevant for
the possible design of vaccines are the identifications of the specific
proteins which are the targets for fish neutralizing antibodies (N-
Abs) and/or some of the proteins which interfere with fish immune
responses (Table 3). The RNA viruses distribute geographically in
Europe according to their optimal replicating temperatures rang-
ing from 10 to 24 ◦C. Finally, the present status of development
of their vaccines illustrates various stages of vaccine development
(Tables 4–6).

In this work, the most important RNA viruses affecting Euro-
pean finfish will be shortly reviewed from the point of view of their
molecular characteristics and corresponding vaccines. To compara-
tively refer to vaccine efficacy, protection is traditionally expressed
as relative percent survival (RPS) to viral challenge as calculated
by the formula: [1 − (mortality in vaccinated fish/mortality in non-
vaccinated fish)] × 100, however, the cumulative percent mortality
(CPM) of the non-vaccinated control groups challenged under the
same conditions than the vaccinated fish, must be at least of 60%,
to correctly interpret the RPS value [4].

2. Viral nervous necrosis viruses (VNNV)

Fish viruses causing viral encephalopathy and retinopathy
(VER), also known as viral nervous necrosis (VNN), have been iso-
lated from more than 35 finfish species, many of them important to
the European aquaculture industry such as sea bass and sea bream
[5,6]. Because they can spread both horizontally and vertically from
mother to offspring, early prophylaxis was focused on preventing
transmission from broodstock fish to eggs/larvae [7]. Thus, in acute
juvenile infections of sea bass or sea bream, these viruses might
cause up to 100% mortality, nevertheless they might also produce
a persistent infection, giving raise to asymptomatic carriers where
no typical disease signs are detectable.
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Table 1
General characteristics of the most important RNA viruses affecting European farmed finfish.

Family/genus Viral species Type of virion aFish
Host

Temp (◦C) No. of seg-
ments/genome

Size (∼kb) Geno types No. of coded
proteins

Nodaviridae/betanodavirus VNNV Non enveloped
Icosahedral

Sea bass Sea bream 25 2 ssRNA+ 5 4–5 2

Birnaviridae/aquabirnavirus IPNV Non enveloped
Icosahedral

Salmon
Trout

10 2 dsRNA 5 7-9 4

Rhabdoviridae/Novirhabdovirus VHSV Enveloped
Bullet

Trout
Turbot

12 1 ssRNA− 11 4 6

Rhabdoviridae/Novirhabdovirus IHNV Enveloped
Bullet

Trout 12 1 ssRNA− 11 4 6

Rhabdoviridae/Vesiculovirus SVCV Enveloped
Bullet

Carp 16 1 ssRNA− 11 4 5

Togaviridae/Alphavirus SAV Enveloped
Spherical

Salmon
Trout

10 1 ssRNA+ 12 6 4

Orthomyxoviridae/Isavirus ISAV Enveloped
Polymorphic

Salmon 10 8 ssRNA− 14 3 10

Viral species and family/genus have been designed according to the vs7 of the International Committee on Taxonomy of Viruses [9], except for VNNV which is a general
term, since other 4 species are presently described in the betanodavirus genus. VNNV, viral nervous necrosis viruses; IPNV, infectious pancreatic necrosis viruses; VHSV, viral
haemorrhagic septicemia viruses; IHNV, infectious haematopoietic necrosis viruses; SVCV, spring carp viremia viruses; SAV, salmon alphaviruses; ISAV, infectious salmon
anaemia viruses. Ss, single stranded. Ds, double stranded. Temp, optimal temperature of natural outbreaks. Sequences from European fish viral isolates are being deposited in
a recent data base established for fish pathogens at the European Community Reference Laboratory for Fish Diseases at the National Veterinary Institute in Aarhus Denmark
(http://www.fishpathogens.eu/)

a Aquacultured finfish hosts most importantly affected by the virus [1].

Viruses belonging to the VNNV group are non-enveloped with
icosahedral symmetry, their genome consisting of bipartite single-
stranded, positive sense RNA. Thus, their larger genomic segment,
RNA1 (3.1 kb), encodes an RNA-dependent RNA polymerase, while
the smaller genomic segment, RNA2 (1.4 kb), encodes the capsid
protein precursor (C) (Table 1). It is during viral RNA replica-
tion, when a subgenomic RNA3 (0.4 kb) synthesized from RNA1
and encoding the non structural protein B2 is transcribed and
expressed. B2 induces necrotic cell death [8] (Table 2).

All VNNV belong to the Nodaviridae family within the betan-
odavirus genus with the striped jack VNNV as their type specie
[9]. In this review we will use VNNV as a general term to
refer to this group of related viral species until they are finally
classified [7,9].

According to partial sequences of their capsid (C) gene, some
authors have classified betanodavirus isolates from Europe, Asia and
Japan into 4 genotypes (19–23% sequence differences between dif-
ferent genotypes) [10,11]. Those different species/genotypes are:
striped jack (SJNNV), barfin flounder (BFNNV), tiger puffer (TPNNV)
and redspotted grouper (RGNNV). While RGNNV has been most
frequently isolated from diseased marine fish from warm-water,
BFNNV has been found mostly in cold-water fish [24]. Further-
more, a betanodavirus isolate from turbot has been suggested as a
fifth genotype [12]. The above mentioned species/genotypes seem
to correspond to 4 known serotypes independently of their geo-
graphical locations [10,11].

The host fish neutralizing antibodies (N-Abs) target the C protein
of VNNV capsids (Table 3). On the protein C, amino acid residues at
positions 1–32, 91–162 and 181–212 defined some of the fish target
epitopes as mapped by pepscan binding of both neutralizing mon-
oclonal Abs (N-MAbs) and serum samples from VNNV-infected sea
bass [13]. Furthermore, the 181–212 and 254–256 positions were
also recognized by other N-MAbs [14]. Those neutralizing target
epitopes could be used to develop future vaccines based on their
corresponding derived peptides and/or DNA sequences, however
because the 223–331 region contains most of the C VNNV sequence
variability, crossprotection studies among locally abundant isolates
might be needed to develop practical vaccines [10].

To date different types of vaccines have been tested for VNNV,
including those made with inactivated VNNV [15,16], virus-like
particles (VLPs) [17–19], recombinant C protein [20,21] and syn-
thetic peptides from the C protein [22] (Table 4). For instance,
vaccination with Escherichia coli expressed recombinant C has given
good results in different species of fish. Thus, significant protec-
tion and virus-neutralizing activity in the sera, was demonstrated
in turbot juveniles and other fish species with an oil-adjuvanted
intraperitoneally (i.p.) injected recombinant C fragment from
striped jack VNNV [20,23]. Similar results were obtained by mix-
ing recombinant C proteins from 3 Japanese isolates from the
red spotted grouper VNNV, when challenged with an Indonesian
VNNV isolate [21]. However as mentioned above and because of
the differences in protection levels, a multivalent vaccine might

Table 2
Identified viral proteins which interfere with fish immune responses.

Virus Viral component Fish interferences References

VNNV B2 Necrotic cell induction [8]
IPNV IPNV No apoptosis induction [169,170]

VP5 Anti-apoptosis [33]
VHSV NV Pathogenicity? [58,86]

VHSV Apoptosis induction [60,61]
IHNV NV Pathogenicity? [58,86]

M Apoptosis induction [62]
SVCV NR NR
SAV SAV Apoptosis induction [131,171]

E2 Apoptosis induction [132]
ISAV NS Anti-IFNs [140,141]

NV, non virion; NS, non structural; NR, not reported. Viral proteins that interfere with host defences identified to date, such as those inducing apoptosis or interfering with
IFN signalling, have been included in this table because their effects might need to be counteracted to increase the efficacy of vaccines, although this possibility has not yet
been tested.
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Table 3
Viral proteins which have been identified as targets for finfish neutralizing antibodies (N-Abs).

Virus Short name No. of Cys Size (∼kDa) Supramolecular structure ∼No. per virion 3D PDB no.

VNNV C 4 35 Multimer 180 2Q23
1F8V
2Z2Q
1NOV

IPNV VP2 5 54 Multimer 180 31DE
3FBM
2DF7
3IDE

VHSV Ga 16 65 Trimer 300 2J6J
2CMZ

IHNV Ga 16 65 Trimer 300 2J6J
2CMZ

SVCV Ga 15 65 Trimer 300 2J6J
2CMZ

SAV E2a 18 55 Heterodimer ND 2ALA
1Z8Y
1RER

ISAV HEa 11 42 Trimer ND 3KU3

C, capsid protein; VP2, viral protein 2; G, glycoprotein; E2, fusion protein; HE, hemaglutinin-esterase; ND, not determined. Cys, number of cysteines present in the mature
protein. 3D PDB no., data from X-ray solved crystal structures of proteins from viruses of fish, human or bird hosts at the Research Collaboratory for Structural Bioinformatics
(RCSB) protein data bank (http://www.rcsb.org/pdb/home).

a Glycosilated proteins.

Table 4
Selected examples illustrating the use of inactivated viruses and/or recombinant/DNA vaccine types, delivery methods and challenge results with finfish RNA viruses.

Virus Fish host Type Antigen Delivery
method

�g/fish Fish
weight (g)

Protection to challengea References

HVC RPS CPM

VNNV Grouperb Inact. VNNV VNNV i.p. – 25 No 40–96 55–87 [24]
Turbot RecProt C i.p. 100 570 No 82 20–44 [20]
Turbot RecProt C i.p. 10 22 Yes 67 39 [27]
Grouper RecProt C i.m. 60 28 No 69–88 65–85 [23]
Turbot DNA C i.m. 20 22 Yes −7 43 [27]

IPNVc Trout Bacu. VLP A Imm. 500/ml <1 Yes 0–42 9–33 [44]
Salmond Bacu. VLP A i.p. 200 55 Yes 27 77 [44]
Salmon DNA A + VP2 i.m. 15 20 No 84 33 [48]
Salmon DNA VP2 i.m. 25 20 No 29 33 [48]
Troute DNA VP2 Oral 10 1–2 No 67–84 80–90 [52]

VHSVc Trout DNA G i.m. 1 3–5 No 94–100 84–98 [107]
Flounder DNA G i.m. 10 3 No 93–100 73–100 [172]
Trout DNA G i.m. 10–50 13 No 94–97 93 [173]
Trout DNA G i.m. 1 2 No 96 78–83 [105]
Trout DNA G Imm. 10/ml 6 No 50 63–100 [113]

IHNVc Salmon DNA G i.m. 25 57–73 No 90–100 50–70 [174]
Trout DNA G i.m. 1 2 No 94 70–80 [105]
Trout DNA G i.m. <1 2–3 Yes 100f 92–96 [108]

SVCV Carp DNA G i.m. 50–100 10–11 No 33–48 64 [125]
Carp DNA G i.m. 10 1–4 No 50–88 70–100 [124]

SAV Salmon Inact. PD PD i.p. – 30 No 0 80g [175]
Trout Rec.SAV SAV Inf. – 0.5 No 100 78 [135]

ISAV Salmon Inact. ISAV ISAV i.p. – 10–50 No 70–94 72–98 [146]
Grouper Inact. ISAV ISAV Imm. – 0.2 No 79–95 85 [16]
Salmon DNA HE i.m. 15 20 No 39–60 41 [147]

(–) No data; RecProt, recombinant proteins derived from virus; Bacu, baculoviruses; Att, attenuated; VLP, virus-like particles; i.p., intraperitoneal injection of oil adjuvants
(water–oil emulsions); i.m., intramuscular injection of aqueous DNA solutions; Imm., immersion in water solution containing the vaccine; HVC, heterologous viral challenges;
RPS, relative percent survival as calculated by the formula [1 − (mortality in vaccinated fish/mortality in non-vaccinated fish)] × 100; CPM, cumulative percent mortality of
the non-vaccinated control groups. CPM must be at least of 60% to correctly interpret RPS [4].

a Numbers are shown without decimals.
b Grouper, Epinephelus coioides.
c The number of published results for challenge tests with IPNV, VHSV or IHNV are very numerous [4]. Thus only some of the data with comparative purposes and

representative of different approaches are shown here.
d Salmon, Atlantic salmon except for IHNV tests.
e Trout, rainbow trout, except for this case in which both rainbow and brown trout were used.
f RPS at 3 months after vaccination (66 RPS at 25 months after vaccination).
g Pathological lesions, no mortalities.
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Table 5
Fish vaccines to RNA viruses that have been commercialized.

Virus Company Name Country licensed Fish host Type Viral antigens Delivery method Informationa

VNNV – – – – – – – –

IPNV Pharmaq AS
Norway

Alpha Ject®

1000
Norway, Chile, UK Salmon

>39 g
Inactivated
Monovalent

IPNV i.p. injection pharmac.govt.nz
pharmaq.no

Aqua Health Ltd.,
Novartis, Canada

Birnagen
Forte

Canada Salmon Inactivated
Bivalent

IPNV i.p. injection ah.novartis.com

Centrovet Ltda
Chile

IPNV Chile Salmon
>30 g

Inactivated
Mono/poly

IPNV i.p. injection centrovet.com

Intervet-
International BV
The Netherlands

Norvax®

Minova-6
? Salmon

>35 g
RecProt. VP2 i.p. injection [49]

aqua.intervet.com

Microtek
International Inc.
British Columbia,
Canada

SRS/
IPNV/Vibrio

Canada
Chile

Salmon
>10 g

RecProt
Trivalent

VP2 i.p. injection microtek-intl.com

VHSV – – – – – – – –

IHNV Aqua Health Ltd,
Novartis, Canada

APEX-IHN Canada Salmonb DNA G i.m. injection [104]
ah.novartis.com/

SVCV Bioveta, Czech
Republic

? ? Carp Inactivated SVCV i.p. injection [121]
bioveta.cf actually
not offered

Pharos, S.A.,
Belgian

? ? Carp RecProt
Baculovirus

G i.p. injection [123]
No web

SAV Pharmaq AS
Norway

PD ? Salmon Inactivated SAV i.p. injection pharmac.govt.nz/
pharmaq.no

Intervet-
International BV
The Netherlands

Norvax®

Compact PD
? Salmon

>35 g
Inactivated SAV i.p. injection aqua.intervet.com/

ISAV Pharmaq AS
Norway

Alpha Jects®

Micro-1 ISA
Norway, Chile,
Ireland, Finland

Salmon Inactivated
Monovalent

ISAV i.p. injection pharmac.govt.nz/

Aqua Health Ltd.,
Novartis, Canada

FORTE VI Canada Salmon Inactivated
Multivalent

ISAV i.p. injection [146]
ah.novartis.com/

Microtek
International Inc.
British Columbia,
Canada

? Canada Salmon Inactivated
Multivalent

ISAV i.p. injection microtek-intl.com/

Centrovet Ltda
Chile

ISAV Chile Salmon
>10 g

RecProt
Mono/poly

HE? Oralc centrovet.com/

Until the early 1990s, most fish vaccines were developed and commercialized by small local companies. Later on, several multinational animal health companies have
acquired, or formed, joint venture companies with those smaller companies. The major commercial markets for these companies are currently the salmon and trout
industries in Northern Europe, Chile, Canada and the USA. PD, pancreas disease. i.p., intraperitoneal injection of oil emulsions. According to the specification sheets of most
commercial vaccines, i.p. requires fish to be anaesthetised before injection. Furthermore, injected fish might show some growth retardation and visceral adhesions. Injected
vaccines are not recommended for vaccination of breeding stocks. Injected vaccines have also some risk of accidental human self-injection unless injection machines are
used. Bivalent or multivalent types, refer to the addition of other inactivated antigens, usually from pathogenic bacteria. For instance, Pharmaq AS and Centrovet, produce
IPN and ISA vaccines in various combinations with bacterial antigens. Microtek International is associated with the Pfizer group. (?) No data.

a Although, most vaccine manufacturers present data showing significant protection against the corresponding experimental viral challenge, usually publications in peer-
reviewed scientific journals are absent. To obtain comparable and reliable data on commercial vaccine efficacy an independent European vaccine evaluation would be much
more convenient.

b Salmon, are Atlantic salmon (Salmo salar), except in this case were it refers to the genus Oncorhynchus.
c The oral vaccine based on ISAV recombinant proteins is delivered mixed with the feed by using a MicroMatrix technology developed by Advanced BioNutrition Co. (ABN)

(advancedbionutrition.com).

be required for overall protection from infection with different
isolates [21,23]. While most of the injection vaccines mentioned
above are candidates to control the disease, a practical vaccina-
tion will still require more detailed data on various parameters,
such as administration route, effective dose and duration of pro-
tection [24]. Moreover, the efficacies of those vaccines were all
evaluated on juvenile or young fish and it should be taken into
account that the highest mortality occurred at the larval stage,
a size too small to be immunized by injection. Therefore, immu-
nization of pre-spawning females might be a potential mean to
protect larval stages, despite the fact that studies on that subject
are still scarce and reported controversial results [25,26]. On the
other hand, despite the protection obtained with recombinant C,
the corresponding intramuscular (i.m.) injected DNA vaccine was
not protective [27] (Table 4), thus indicating that DNA vaccines sim-
ilar to the ones to novirhabdoviruses might not be the best vaccine
option for VNNV viruses. Nevertheless, alternative antigens, adju-

vants and/or delivery methods might be needed for each particular
virus since many of those possible alternatives have not yet been
tested. In addition to the technologies applied to VNNV vaccines,
a reverse genetics system for the efficient recovery of infectious
particles has been used to design possible experimental vaccines
based on attenuated VNNV [28]. Although several of the vaccines
commented above have been patented (Table 6), there are no field
trials reporting their effects, nor there are any commercial vaccines
being offered at this moment (Table 5).

3. Infectious pancreatic necrosis viruses (IPNV)

IPNV are one of the most widely distributed virus affecting most
of the farmed finfish species, causing high mortality in recently
hatched salmonids, and high worldwide economic losses in juve-
nile salmon when they are transferred from fresh to sea water.
Furthermore, the wide presence of IPNV in asymptomatic adult car-
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riers surviving the disease, contributes to their spreading, interferes
with other diseases [29] and is a problem for the correct evaluation
of the efficacy of vaccines during viral challenge experimentation
and/or field trials.

IPNV are non-enveloped viruses with a 60 nm icosahedral struc-
ture and a bi-segmented double-stranded RNA (dsRNA A and B) of
∼5 kbp. Their RNA-A encodes a polyprotein precursor and the non-
structural protein VP5 (Table 1), while their RNA-B encodes the VP1
RNA-dependent RNA polymerase. After infection, the polyprotein
precursor is cleaved to generate VP2 (the capsid protein), VP3 and
VP4 [30]. On the other hand, IPNV interferes with type I interferon
signalling [31], while contradictory reports do exist on the effects
of IPNV on apoptosis [32,33] (Table 2).

IPNV belong to the Birnaviridae family and the Aquabirnavirus
genus with IPNV as the type specie [9]. Comparison of the VP2
sequences from many IPNV isolates leads to the identification of,
at least, 6 genogroups corresponding to 10 serotypes [34]. Thus,
genogroup I corresponds to I1 (serotype A9, type strain Ja) and
I2 (serotype A1, type strain WB, including most of the isolates
from United States); genogroup II corresponds to serotype A3 (Ab);
genogroup III corresponds to genotypes III1 (serotype A2, type
strain Sp) and III2 (serotype B1, type strain TV-1); genogroup IV cor-
responds to serotypes A5 (type strain Te) and A6 (C1); genogroup
V includes serotype A7 (strains C2) and A8 (C3) and genogroup VI
corresponds to serotype A4 (He). An additional genogroup VII has
been also proposed [35]. Serotypes A2–A5 are found principally in
Europe.

The VP2 protein of the IPNV capsid has been identified as the
main target for N-Abs (Table 3) and their positions 210–225 and
312–324 as the main epitopes [36–39]. According to the recently
elucidated tridimensional structure of VP2, those main epitopes
are located in the protrusions of the IPNV capsid. Because the
main epitopes also contain the VP2 hypervariable region (204–344)
responsible for receptor binding and for sequence differences
among genotypes, crossprotection studies should evaluate the effi-
cacy of vaccines before being practical.

One of the reasons why early attempts of vaccination to IPNV
had not fulfilled many of their expected beneficial effects, might be
because the highest susceptibility to IPNV infection occurs at the
early stage when fish are not immunocompetent (have not reached
a fully developed immune system). Therefore, it was first though
that vaccines against IPNV should be designed to reduce verti-
cal transmission of IPNV from brood stock to progeny. However,
things changed and IPNV greatly increased their economic impact
with the development of salmon culture since it was found that
IPNV affected not only the youngest fish but also fresh-water raised
salmon when it was released to the sea for further growth [30].
Other early complications to the development of IPNV vaccines
were the low mortality on immunocompetent non-vaccinated fish
and the generation of asymptomatic carriers among the fish sur-
viving an IPNV infection whether the fish were vaccinated or not.
Therefore, efforts were made to develop a suitable model for IPNV
challenge with high mortality on non-vaccinated controls [40,41]
and to test vaccinated fish by their capacity not only to resist highly
virulent viral challenges but also to eliminate residual IPNV after
the challenge. From the early reports on successful vaccination
of adults with inactivated IPNV [42], other possible vaccine alter-
natives have been reported with varying degrees of success. For
instance, VP2 made in recombinant yeast produced N-Abs by injec-
tion and oral deliveries [43], while VLPs obtained by expressing
RNA-A in baculovirus [44] or in Semliki forest virus [45], as well
as expressing VP2 on other recombinant forms [46,47] were not
antigenic or not fully protective. On the other hand, only small
protection levels were reported by using DNA vaccination [48]
(Table 4). From all the studies mentioned above, 4 vaccine manufac-
turers currently offer IPNV vaccines by oil-adjuvanted i.p. injection

delivery. Thus, Pharmaq AS, Aqua Health Novartis and Centro-
vet produce mono or multi-valent vaccines containing inactivated
IPNV, whereas Intervet Norbio Norvax® Protect-IPN uses a VP2
protein fragment expressed in E. coli [49,50] (Table 5). However,
because of problems with their efficacy in the field compared to
results in the laboratory tests (the high prevalence of IPNV among
fish populations might cause some of those problems), and of the
presence of tissue adhesions in the fish abdominal cavity caused
by i.p. injection of oil-adjuvanted vaccines [43,51], alternative vac-
cines and/or delivery methods are still needed. In this respect,
during 2010 an 80% protection in trout was obtained by oral vac-
cination with VP2-coding plasmids complexed with alginates [52]
(Table 4). Both the development of a possible IPNV DNA vaccine
and their novel delivery method would deserve further attention
in the coming years.

4. Viral haemorrhagic septicemia viruses (VHSV) and
infectious haematopoietic necrosis viruses (IHNV)

Isolated from more than ∼50 fish species from North America,
Asia and Europe, from ∼15 different commercialized fish species
such as salmonids and flatfish [53] and from an increasing num-
ber of free-living marine fish species [3], VHSV cause the highest
economic impact in European trout farming. Furthermore, during
the last ∼10 years, the VHSV-related infectious haematopoietic
necrosis viruses (IHNV), originated in North America have been
increasingly isolated in Europe [70,72].

VHSV and IHNV correspond to 2 different viral species
of enveloped negative-stranded RNA rhabdoviruses of
∼170 nm × 80 nm, having a genome of a single RNA molecule
of negative polarity of ∼11 kb [54,55], whose full genome
sequence is known for several isolates from both VHSV [54,56]
and IHNV [57] species. The VHSV/IHNV genomes show different
sequences coding for 5 structural viral proteins (N, P, M and G and
L proteins) and a non-virion (NV) protein (Table 1). Their genome
(3′ N–P–M–G–NV–L 5′) is encapsidated by the nucleocapsid
protein N associated with the RNA-dependent RNA polymerase,
L and P proteins to form the replication complex. Data obtained
with NV-knockout IHNV and/or VHSV, have shown that NVs are
required both for optimal replication in cell culture and for in vivo
pathogenicity, although the mechanism of their action remains
to be investigated [58,59]. Finally, although the VHSV induces
apoptosis, the protein causing that effect has not been identified
yet [60,61], while the M protein of IHNV induces apoptosis [62]
(Table 2).

VHSV and IHNV are 2 different viral species that belong to
the Rhabdoviridae family. However, due to the common pres-
ence of a NV gene absent from other rhabdoviruses, VHSV and
IHNV were placed into a new Novirhabdovirus genus with IHNV
as the type specie [9]. Although the external protein G from
VHSV/IHNV shows only ∼38% of amino acid identity and there
is no cross-neutralization between them, their corresponding ter-
tiary structures [63,64] are very similar and there is some western
blot cross-reactivity [65,66]. The abundant phylogenetic analyses
of G [67] and/or other protein [67] sequences from different iso-
lates have defined 4 major VHSV genotypes (I–IV) differing by
∼6% in their nucleotide sequences. Similar phylogenetic analyses
of American IHNV field isolates have defined 3 major genogroups
(U, M, and L) and one more in Japan, differing in 4–6% in their
nucleotide sequences [68]. Taken into account the classifications
mentioned above, most of the European IHNV isolates belong to
the M genogroup [69,70]. To facilitate comparative studies and
availability to researchers, both for VHSV [71] and IHNV [72]
European isolates, an European union-funded data base has been
organized.
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The envelope of VHSV/IHNV contains ∼300 trimeric spikes of
glycoprotein G, responsible for viral cell attachment and fusion.
Although the G is the only targeted viral protein for fish N-Abs
(Table 3), it is well known that survivors of infection do not always
show high titres of N-Abs, thus suggesting that alternative mecha-
nisms might be operating in resistance to infection [73]. Although
the disulphide bonding pattern of the G protein [63], the domains
participating in fusion [74–76] and the crystal structure of similar
mammalian rhabdoviruses [77,78] are all known, it has been dif-
ficult to map the target epitopes for neutralization. Nevertheless,
positions 140 and 433 [79] and 253 (Lorenzen, personal communi-
cation) were mapped in VHSV G and major antigenic sites I (78–81
and 230–231) and II (272–276) were identified in IHNV [80,81]
by sequencing MAb resistant mutants. Therefore, the results men-
tioned above pointed out to the G protein as the target to develop
subunit and/or DNA vaccines.

Live attenuated viruses by cell culture passages were first devel-
oped to obtain a thermoresistant VHSV strain [82] and several IHNV
strains [80,83]. High levels of protection were obtained by using
the attenuated strains [84,85]. However, one of the problems of
those vaccines was that although they work well in the laboratory,
they did not work equally well in the field. For instance, differences
in fish disease susceptibility caused that safe attenuated virus for
one fish strain, was virulent for another. Another problem refers
to their safety. Thus, live attenuated VHSV or IHNV strains are
not used commercially, mostly because their reversion frequency
to pathogenic wild-type virus has not been determined. A recent
alternative approach to engineer new and possible safer live recom-
binant VHSV/IHNV strains, including knockouts, is based on reverse
genetics [86–89].

Several attempts were then made to obtain an efficacious
and safer vaccine against VHSV and/or IHNV by using inacti-
vated viruses [90,91]. Some of those vaccines (for instance, those
inactivated with �-propionolactone) were very efficacious [92].
However, they have not been produced in large scale, most
probably due to the difficulties and dangers associated with the
requirement for production of large amounts of live virus by cell
culture techniques.

The advent of genetic engineering was another technological
alternative to obtain large amounts of antigenic viral subunits, such
as the protein G. However, although it is well known that the
G of novirhabdoviruses induces N-Abs and is responsible for high
levels of protection, recombinant G has shown very limited and
irreproducible protection. Thus, the injection of finfish with recom-
binant G proteins produced in E. coli [93,94], Caulobacter crescentus
[95], Aeromonas salmonicida [96], yeast [93], and/or baculovirus
[97,98], did not obtain good protection, despite the induction of
some levels of N-Abs to either VSHV [93,99] or IHNV [100]. All those
failures might be due to the complex post-translational processing
of conformationally immunogenic G in the fish host cells, which
is difficult to mimic in other organisms, specially in prokaryotics.
On the other hand, synthetic peptide vaccine alternatives, such as
those consisting in linear peptides corresponding to known anti-
genic epitopes of the G protein, also failed to elicit a significant Ab
response [101].

Anderson et al. [102] were the first to report the success-
ful use of a DNA vaccine to protect rainbow trout against IHNV
challenge. Since then, DNA vaccines containing the G gene of
IHNV and/or VHSV have shown a 70–100 RPS reproducible pro-
tection against their respective viral challenges after i.m. injection
[102,151,113,106,159,152]. Furthermore, DNA vaccines using their
corresponding G genes have been effective for any Novirhabdovirus
tested (VHSV, IHNV and the hirame rhabdovirus HIRRV) [4,103]
and there is a DNA vaccine against a marine strain of VHSV that has
shown protection in flounder [172]. For each of these novirhab-
doviruses, protection has been shown with, at least 2 different

plasmid constructs, and in, at least 2 different laboratories. The suc-
cess of these vaccines has allowed the 2005 approved APEX-IHN
DNA vaccine (Table 5), manufactured by Vical-Aqua Health Ltd. of
Canada (Novartis) [104] to be tested in the field in Canada during
last years. Nevertheless, safety considerations have not allowed yet
their commercialization in Europe.

Numerous reports including dual vaccination for VHSV/IHNV
[105], dose–responses/time course [106], temperature dependence
[107], long lasting immunity up to 2 years [108], and non specific
early protection [103,109], have been described for novirhabdoviral
DNA vaccines. However, for maximal vaccine efficacy in the field,
DNA vaccines must provide broad protection against the different
genotypes abundant in each particular geographical area and up
to now the majority of publications using novirhabdoviral vaccines
described homologous challenges. Thus, cross-genotype challenges
assessing efficacy against VHSV strains from European genotypes
II and III or the North American/flounder genotype IV have not
been reported yet. Among the few reports studying heterolo-
gous challenges, significant but lower RPS in heterologous than in
homologous challenges has been observed in the M genogroup of
IHNV [110,111], thus arguing that although DNA novirhabdoviral
vaccines provide some protection to heterologous challenges, their
level of protection might depend on the relatedness of the strains.
More studies are needed to reach definitive conclusions in these
practical aspects of a new technology.

As indicated before, novirhabdoviral DNA vaccines are not yet
being used in Europe mainly because of the possible considera-
tion of DNA vaccinated fish as genetic modified organisms (GMO).
In addition, other safety concerns about the use of the human
cytomegalovirus promoter, and/or difficulties in the administration
of the vaccine at a large scale in small fish (mass vaccination meth-
ods), might also contribute to augment their practical problems. In
this respect, alternative delivery methods such as oral vaccination
by using polyethylene-VHSV [112] or ultrasound aided immersion
[113], have been described but they are not practical yet (Table 4).
On the other hand, because of their small size and abundance of
molecular tools, the use of a novel experimental vaccination model
using zebrafish/VHSV to investigate some of the above mentioned
problems might also contribute to further improve some practical
aspects of the new novirhabdoviral DNA vaccines [114,115].

5. Spring viremia of carp viruses (SVCV)

SVCV affect all farmed carp species in Europe, where it causes
significant morbidity and mortality typically at spring [116,117].

SVCV contain a negative-stranded RNA genome coding for L
polymerase, N nucleocapsid, G glycoprotein and P and M matrix
protein genes but they have no NV protein gene [118] (Table 1).

As VHSV and IHNV, SVCV belong to the Rhabdoviridae family
but because they lack the NV gene they have been classified among
the Vesiculovirus genus with the vesicular stomatitis Indiana virus
as the type specie [9]. Furthermore, cross-neutralization studies
revealed no antigenic relationships with novirhaboviruses [116]. On
the other hand, phylogenetic analysis of a partial G-gene region
of SVCV isolates resulted in genotypes Ib, Ic, and Id (isolates from
Europe) and genotype Ia (isolates from Asia or North America)
[119,120].

As with novirhabdoviruses, SVCV G protein is involved in cell
attachment, fusion and is targeted by N-Abs (Table 3), however no
epitope mapping attempts have been reported yet.

At temperatures >17 ◦C, SVCV naturally infected carp develop N-
Abs that protect them against re-infection. It has also been shown
that a protective and long lasting immunity of carp against SVCV
can be obtained following i.p. or oral vaccination of carp with
live virus. Furthermore, carp vaccinated by i.p. injection or oral
administration with live attenuated SVCV also developed resis-
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tance to re-infection [116]. Those and similar reports resulted in
an inactivated preparation containing 2 strains of SVCV delivered
by oil-adjuvanted i.p. injection being commercialized in Eastern
Europe in 1982 [121] (Table 5). However, no reports do exist on
their performance and use in the field, except for some non-peer
reviewed conference abstracts that reported reduction to <1% of
SVCV outbreaks in Austrian carp farms [122]. On the other hand,
subunit vaccines have not proved protective so far, as exempli-
fied by the failed attempt of commercialization by the Pharos SA
company (Table 5) of a baculovirus expressed G protein [123], nor
DNA vaccines have showed similar protection and reproducibility
than those against novirhabdoviruses [122]. For instance, mixtures
of 10 DNA plasmids containing partial or complete SVCV G gene
fragments from the European reference strain (Fijan, Genogroup
Id) tested in carp [125], have shown that the majority of groups
induced little protection, except one that had a maximum of 48
RPS (64% CPM). As another example, DNA vaccines expressing the
G of the North American SVCV strain from North Carolina protected
carps in different trials against low, moderate and high viral dosages
of challenge with the homologous virus isolate [124] (Table 4). It is
not yet clear whether the difference of efficacies between novirhab-
doviruses and SVCV DNA vaccines is due to difficulties with the
challenge models in carp (for instance, previous exposure to tem-
perature changes mimicking natural situations, might be required
for highest mortalities) [116], or whether they are related to SVCV
being a different genus. Further work is required to determine the
best challenge conditions, dosages, delivery method, optimal vec-
tor and/or adjuvants [125], to obtain more reproducible results with
DNA vaccination. With respect to future work, an infection model
using zebrafish/SVCV has been described [126] that might be used
not only to study interferon induction [127], but also to speed up
research on possible practical SVCV DNA vaccines.

6. Salmonid alphaviruses (SAV)

Both salmon pancreas disease (PD) of Atlantic salmon in
Norway, Ireland, Scotland and Canada [128] and trout sleeping dis-
ease (SD)[129] of rainbow trout in France and Italy are caused by
salmonid alphaviruses (SAV).

SAV are enveloped spherical viruses with a positive single
stranded RNA genome of ∼12 kb, coding for capsid glycoproteins
(E1, E2, E3 and 6K) and non-structural proteins (nsP1–4) [130]
(Table 1). E1 and E2 form heterodimer glycoprotein spikes pro-
truding from the SAV membrane. After infection, the viral particles
[131] induced apoptosis most probably due to their E2 protein [132]
(Table 2).

Analysis of partial nucleotide sequences of viruses isolated from
PD and/or SD diseased fish showed in both cases high homolo-
gies to the genus Alphavirus of the family Togaviridae with Semliki
virus forest being their type specie [9], while the study of E2
nucleotide sequences from numerous isolates from Ireland, UK,
Norway, France, Italy and Spain, identified 6 different genotypes
[133,134].

In non-aquatic alphaviruses protective epitopes inducing N-Abs
have been identified on the surface glycoproteins El and E2. It was,
therefore, assumed that the 2 corresponding proteins in SAV will
also carry such epitopes and be useful to design recombinant sub-
unit and/or DNA vaccines [130] (Table 3).

Field observations showed that fish surviving SAV infections
were resistant to re-infection, thus suggesting the possibility to
apply vaccination strategies for the control of PD and SD. Confirm-
ing those observations, live recombinant viruses [135], attenuated
SAV [135] and inactivated SAV delivered by oil-adjuvanted i.p.
injection [128] have been protective in rainbow trout (Table 4).
As a consequence, there are 2 commercial vaccines against PD

based on inactivated virus produced by Pharmaq and Intervet Nor-
bio (Table 5). Although there are no peer-reviewed reports on
their efficacies, the Intervet Norbio vaccine showed reduction in
histopathological damages (equivalent to 80–90 RPS), according
to previously commented conference abstracts [122] and is being
used in Ireland and Norway. DNA vaccines protecting fish against
SAV have not been reported yet.

7. Infectious salmon anaemia viruses (ISAV)

ISAV cause 15–100% mortalities in Atlantic salmon, thus produc-
ing severe economic losses to the greatest finfish farmed product
in Europe. Furthermore, their economic impact was high because
European vaccination was only allowed recently, while the first
applied control strategy was to stamp out all fish diagnosed with
ISA. First detected in Norway in 1984, ISAV has been isolated
from Atlantic salmon in Canada, USA and Scotland and from coho
salmon (Oncorhynchus kisutch) in Chile [136]. Because both the
asymptomatic infections in marine wild finfish and the potential
for emergence of new pathogenic strains, either by antigenic drift
(mutations in seasonal variations), or antigenic shift (reassortment
of gene segments), ISAV are a continuous thread for salmon aqua-
culture everywhere [137,138].

ISAV are enveloped viruses, with a 8-segmented, negative-
sense, single-stranded RNA genome similar to influenza virus but
with no sequence homology. RNA segments encode PB1 and 2
putative polymerases, NP nucleoprotein, PA polymerase, F surface
fusion, HE surface hemaglutinin-esterase, NEP non-structural pro-
tein and M matrix proteins (Table 1) [136]. The main differences
with influenza are that the hemaglutinin and esterase activities are
in the same HE protein while their fusion activity is on a separated
F protein [139]. Segment 7 and 8 products having type I interferon
(IFN) antagonizing activity have been identified [140,141] (Table 2).

ISAV belongs to the Orthomyxoviridae family and to the isavirus
genus with ISAV as the type specie [9]. The complete ISAV genome
has been sequenced recently [142]. Sequence analysis of HE and F
surface protein genes from numerous isolates from different world-
wide geographical locations allowed to group the sequences in 3
different genotypes (I–III) [143,144]. ISAV isolates could also be fur-
ther differentiated by their abundant insertion/deletions in a highly
polymorphic 337–372 regions located in the HE stem [136,143].
Most of the European isolates seem to belong to genotype I [143].

The HE, one of the most variable of the ISAV genes, is respon-
sible for receptor-binding and is the main target for N-Abs
(Table 3). Furthermore, virulence, HE protein stem length and ISAV
cytopathogenicity are correlated [145]. Therefore, HE was the most
appropriated ISAV protein to develop subunit and/or DNA vaccines.

Results of first passive immunization experiments in salmon
showed weak protection levels despite the fact that serum from
survivors contained complement-dependent N-Ab activity [138].
On the other hand, oil-adjuvanted i.p. vaccines, based on inacti-
vated ISAV from Canadian strains are the base of 3 ISAV commercial
vaccines actually available and used in farmed Atlantic salmon
in Canada and USA (Table 5), despite the fact that available
information on those ISAV vaccines is mostly based on non-
peer reviewed abstracts and internet publications since scientific
reports are scarce. For instance, several non-peer reviewed con-
ference abstracts commented by Biering et al. [122], reported
oil-adjuvanted inactivated ISAV vaccines with 96 RPS (Intervet
Norbio) or with 54 RPS (Microtek) but similar prototype mul-
tivalent (containing also bacterial antigens) vaccines showed 43
RPS whether or not the ISAV antigen was present. On the part of
published evidence, an inactivated ISAV vaccine from AquaHeaIth
tested by i.p. injection in salmon, resulted in 92–96 RPS when
challenged by co-habitation but in 0 RPS when challenged by i.p.
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injection [146]. Although, commercial vaccine development has
concentrated on inactivated ISAV, some research into alternative
recombinant antigens is also on going. For instance, a DNA vac-
cine containing the HE gene, administered as a primary dose and 2
boosters, provided some protection to salmon [147] (Table 4) and
a recombinant protein vaccine produced in yeast is to date the first
oral vaccine being commercialized (Centrovet in Chile with a pro-
prietary MicroMatrix technology for encapsulation from Advanced
BioNutrition Corporation) (Table 5).

8. Technological alternatives for viral fish vaccines

In the absence of any existent therapeutic methods and because
farmed finfish can develop long-term acquired immunity, viral dis-
ease prevention by vaccination is considered one of the most viable
strategies to control these diseases [148,149].

Ideally, a viral vaccine should mimic natural viral infections to
induce the proper immune response without causing the disease.
Thus compared to other alternatives, live-attenuated viral fish vac-
cines have many advantages, because they not only induce high
protective immunity but also might disseminate from vaccinated
fish, both resulting in simple delivery and low dose requirements.
However, the risks of reversion to virulence and uncontrolled
environmental spreading have not allowed their authorization
and therefore none of them have been used in the field, despite
the availability of appropriated viral strains obtained by tradi-
tional and/or recent reverse genetic technologies (i.e., VNNV, VHSV,
IHNV).

In contrast, most of the actual commercial fish viral vaccines
are made with inactivated virus (i.e., IPNV, SAV, ISAV) (Table 5),
most probably because inactivated viruses are not subject to sever
regulatory constraints and might be included in multivalent bac-
terial injectables with a longer tradition of use in aquaculture
(Table 5). However, to induce protection, inactivated virus must
be adjuvanted in oil–water emulsions (which might induce growth
retardation and visceral adhesions) [150] and delivered by i.p.
injection (which is labour intensive, unless automatic injection
machines are used). Furthermore, i.p. injection requires fish to
be anaesthetised and i.p. vaccines are usually not recommended
for vaccination of breeding stocks, according to the information
provided by their own manufacturers. In addition, cell culture pro-
duction of the large amounts of the live viruses required to be
inactivated, needs extra safety containment and is a complex and
costly technology. On the other hand, some inactivated vaccines
might also be inconsistent in their efficacy.

With the advent of genetic engineering, the possibility of design-
ing vaccines with recombinant viral proteins rather than with the
whole virus, became a new alternative. However, the use of recom-
binant proteins as antigens for injectable vaccines has not fulfilled
their expectations to protect fish against most viruses. For instance,
although injection of recombinant G of VHSV or IHNV in rainbow
trout elicited moderate levels of N-Abs, the levels of protection
were low and/or irreproducible [4]. As a result only those against
IPNV and a recent one to ISAV are being commercialized [46,49,122]
(Tables 4 and 5).

The so called genetic immunization by using naked DNA (DNA
vaccination) is the most recent technology applied to fish viral
vaccines. Fish viral DNA vaccines consist of a bacterial plasmid
coding for the corresponding viral protein antigen, their expres-
sion being under the control of eukaryotic elements (typically, the
human cytomegalovirus promoter and the SV40 terminator) and
an antibiotic resistance coding gene for plasmid preparation. Fish
viral DNA vaccines are usually delivered dissolved in water by i.m.
injection. For instance, i.m. injection of fish of plasmid DNA encod-
ing novirhadoviral G genes, protected against challenge by IHNV

[151] and VHSV [152] under many different laboratory controlled
conditions as mentioned before. As a result of their success, the
only DNA vaccine which has been approved for use in the field
is the APEX-IHN DNA vaccine manufactured by Vical-Aqua Health
Ltd. of Canada (Novartis) [104]. However, for several other RNA viral
diseases, including VNNV, IPNV, SVCV, SAV, and ISAV, the level of
protection obtained by their corresponding DNA vaccines delivered
by i.m. injection, has been too low or irreproducible for commercial
use (Tables 4 and 5).

DNA vaccines to fish viruses remain, therefore, an attrac-
tive alternative to traditional vaccines (attenuated, inactivated or
recombinant protein subunits) because of their straight-forward
design and construction, heat stability, identical production tech-
nology for any DNA vaccine which results in low production costs,
easy possibility of designing multivalent vaccines, possible inclu-
sion of molecular adjuvants, long-term storage facility, no risk
of reversion to a pathogenic form and low levels of chemical
impurities [4]. Inclusion of markers to differentiate infected from
vaccinated fish (differentiating infected from vaccinated individ-
uals, DIVA) is also easy to include in DNA vaccines than in other
alternatives. However, DNA vaccines for most fish RNA viruses still
remain to be developed at laboratory scale.

9. Alternative methods to deliver viral vaccines to the fish

Fish can be vaccinated either by injection (i.p or i.m) fish-
to-fish or by mass delivery (immersion or oral administration)
methods [153]. These alternatives have different advantages and
disadvantages with respect to their level of protection, side-effects,
practicality and cost efficiency, depending on the size of the fish
to be vaccinated and the specific virus. Of all the possibilities
mentioned above, only the i.p. (i.e., oil-adjuvanted VP2 IPNV recom-
binant protein) or i.m. (i.e., G IHNV DNA) vaccines delivered through
fish-to-fish injections have been used to vaccinated fish to viral
diseases (Table 5). However, oil-adjuvanted i.p. injectable vaccines
have the disadvantages mentioned before while i.m. injection is an
inefficient method of delivering DNA, as recognized by the authors
of the IHNV DNA vaccine [104]. On the other hand, mass deliv-
ery methods such as immersion or oral deliveries, will be easiest
to apply when small (fingerling) rather than large fish need to
be vaccinated. For immersion vaccination the help of ultrasound
[113,154] or of hyperosmotic solutions, has been reported. For oral
vaccination, research has focused on protecting the antigens from
digestion in the stomach/gut, for instance by using encapsulation in
alginate nanoparticles [52] or matrix forming compounds (Centro-
vet) (Table 5). Because, mass delivery methods such as immersion
or oral vaccination are not yet developed, it might be an important
area for further viral fish vaccine improvement [153].

10. Comparative overview of the DNA vaccines against
finfish RNA viruses

In spite of the amount of research performed, few fish viral DNA
vaccines are commercialized. No live attenuated vaccines are cur-
rently licensed, and only one is a DNA vaccine. Thus, most of fish
viral vaccines for sale (Table 5) and/or their corresponding patents
(Table 6) are based upon inactivated virus or viral recombinant
proteins delivered by i.p. injection in oil-adjuvants. For instance,
inactivated vaccines against IPNV are being used in salmon cul-
ture, despite the fact that not all their performances have been
reported in peer-reviewed journals and most of them would prob-
ably benefit from improvements. Different is the case for the fish
novirhabdoviruses such as VHSV and IHNV, since DNA vaccines offer
excellent well-demonstrated protection. However, despite DNA
vaccines against IHNV being commercial in Canada, they have not
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Table 6
Finfish vaccine related-patents in the world intellectual property organization (WIPO).

Concept Organization Country Number

Viruses
VNNV VNNV Schweitzer Che. Co. USA WO2004/050142

Inactivated VNNV Novartis A.G. Swiss WO2004/074467
Empty capsids VLPs AFSSA France WO2005/112994

IPNV Synthetic peptides Proteus Mol. Design UK WO1994/004565
Empty capsids VLPs Maryland U. USA WO1999/050419
Yeast VP2, VP3 Aberdeen Univ. UK WO2002/038770
VP2 Maryland Univ. USA WO2003/013597
IPNV Schweitzer Che. Co. USA WO2004/050142
Plant VP2, VP3 Novartis A.G. Swiss WO2004/055190
Yeast VP2 Advanced Bionutrition USA WO2008/140610

VHSV Attenuated VHSV Kolbl, O. Germany WO1989/005154
Nv defective novirhabdoviruses INRA France WO2003/097090
Fusion mutant G genes INIA Spain WO2006/035082
Recombinant novirhabdoviruses INRA France WO2007/144773

IHNV G protein RNA Inc. Korea WO2002/036618
G protein Novartis A.G. Swiss WO2004/026338

SVCV Attenuated SVCV Kolbl, O. Germany WO1989/005154
G gene US Geological Survey USA WO2009/002376

SAV C fragment epitope Intervet USA WO2007/031572

ISAV Immunogenic proteins Genomar A.S. Norway WO2000/072878
Surface antigens/genes Novartis A.G. Swiss WO2001/010469
Viral proteins/genes Akzo Nobel N.V. Netherlands WO2001/049712
Antigenic polypeptides Univ. Aberdeeen Scotland WO2001/066569
DNA Microtek Int. Canada WO2002/079231
M1, M2 proteins Azco Nobel N.V. Netherlands WO2002/026784
48 kDa fragment Akzo Nobel N.V. Netherlands WO2003/035680

Methods
Vector Transposons INIA Spain WO2007/080203

Delivery Ultrasound INIA Spain WO2006/035084
Oral Wageningen Univ. Netherlands WO2006/080842
Oral Riemser Arzneimittel A.G. Germany WO2006/092168
Recombinant microalgae New Mexico Univ. USA WO2008/027235
DNA in food Sol. Biotecnologicas Chile WO2008/077413
Protein nanocarriers Kapsid Link SL Spain WO2009/103752
Bacteriophages Big DNA Ltd. UK WO2009/138752

Adjuvants IHNV G Novartis AG USA WO2004/026338
siRNA Novartis AG USA WO2004/085645
Novirhaddoviral G Forinnova A.S. UK WO2005/123121
RNA interference Advanced Bionutrition USA WO2005/079236
dsRNA Hokkaido U. Japan WO2010/024284

According to data in WIPO (http://www.wipo.int/pctdb/en/index.jsp)

been approved in Europe. On the other hand, while VNNV, SVCV,
SAV and ISAV inactivated vaccines have been tested at the labo-
ratory scale, and commercial SAV or lSAV vaccines are currently
available, there is none commercial for VNNV or SVCV (Table 5).
Alternative DNA vaccines are also not available since protection
with the corresponding N-Ab targeted viral protein genes of IPNV,
SVCV or ISAV, was only moderate while no protection data has been
reported for VNNV or SAV (Table 4).

As commented above, most vaccination formulations using
whole viruses whether those are delivered as infection, attenu-
ated and/or inactivated, seem to have some effectiveness with
different RNA viruses, while recombinant viral proteins (except
those for aquabirnaviruses) or DNA vaccines (except those of
novirhabdoviruses) are usually not so effective. The reason for these
differences remains obscure, since we are only beginning to under-
stand the interactions between finfish and their pathogenic viruses
[155]. At least one of the differences is that while whole virus
includes all the viral proteins and genomic RNA, most recombinant
protein or DNA vaccines only contain the N-Ab targeted compo-
nent (subunit vaccines). In addition, replication of viral RNA from

live vaccines produces double stranded RNA intermediaries which
activate Toll-like receptor 3 (TLR3), while oil-adjuvants also acti-
vate several other TLRs [156,157]. Perhaps not only N-Ab targeted
proteins/genes but also viral RNA or dsRNA, would need to be simul-
taneously delivered with N-Ab targeted proteins to induce higher
protection responses, but this possibility has not been tested. On the
other hand, other viral proteins that interfere with host defences,
such as those inducing apoptosis (VP5 of IPNV, VHSV, M of IHNV)
or interfering with IFN signalling (NS of ISAV) (Table 3), should
also be included in the subunit vaccines for maximal efficacy. For
instance, many of the identified viral interferences to the cell they
infect refer to apoptosis. Viral interference with apoptosis might be
a way to increase their pathogenicity, since apoptosis is a natural
way for cells to die without releasing danger signals such as hmgb1,
a pleitropic cytokine [158]. Therefore, apoptosis might be promoted
by viral infection to avoid necrotic cellular death which will induce
hmgb1 secretion and therefore alert the fish host of the infection.
Because there are no reports, we might only speculate about the
possible inclusion in new DNA vaccine formulations of these viral
RNA, dsRNA and/or interfering viral proteins to activate TLRs and/or
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to reduce viral interferences, respectively, and thus potentiate sub-
unit vaccine efficacy to obtain similar protection levels than those
using whole viruses.

11. Safety/regulatory aspects of fish DNA vaccines

Since fish DNA vaccines have not been licensed in Europe,
their safety requirements will need to be regulated based on
the previous general rules for DNA vaccines of the European
Agency for Evaluation of Medical Products. However, some issues
are specific of fish, for instance, the differentiation between a
DNA-vaccinated fish and a genetically modified organism (GMO)
needs to be further clarified, since different national regulatory
organizations maintain different criteria. Thus, the British Agricul-
ture and Environment Biotechnology Commission and the Danish
Medical Authorities consider that a DNA-vaccinated fish is a GMO
only if the foreign DNA is integrated into the fish genome, while
the Norwegian Directorate for Nature Management considers any
fish containing foreign DNA as a GMO and the Norwegian Biotech-
nology Advisory Board recommends that a DNA vaccinated fish
should only be considered a GMO if the foreign DNA is integrated
and cause either negative effects or is inherited by the offspring
[159]. Detailed discussions on these aspects of DNA vaccines have
been published by the Norwegian Biotechnology Advisory Board
(www.bion.no/publikasjoner/regulation of DNA vaccines.pdf),
the Danish Institute for Food and Veterinary Research (www.dfvf.
dk/Files/Filer/Publikationer/DNAvaccines report - Final1.doc)
[159] and the American FDA (www.fda.gov/cber/gdlns/
plasdnavac.pdf). Because of present uncertainties as to what
extent DNA vaccines persist into the fish and/or are sheded to
the environment [160], European authorities still debate whether
to label DNA vaccinated fish as GMOs or not [161]. The debate is
not trivial because labelling DNA vaccinated fish as GMOs may
negatively affect the willingness to consume DNA vaccinated fish.

The knowledge of the effects and pathways that the DNA fol-
lows after being delivered to the fish are, therefore, central to
the above mentioned safety concerns. Thus, after delivery to the
fish, the DNA might: (i) induce fish immune responses and pro-
tection, distribute through fish tissues, insert into the fish genome
and/or to be degraded and (ii) be released to the environment or to
consumers either from the vaccinated fish and/or from accidental
spilling [162]. Those different pathways might affect the vaccinated
fish welfare, the environment impact uncertainties and the con-
sumer acceptance, generating their corresponding safety concerns
[159,161]. Safety concerns on fish welfare are raised because the
DNA induced immune responses might not only be the intended
(induction of protection), but also some unintended (autoimmu-
nity, tolerance, cross-protection to other pathogens, etc.), which
might decrease fish welfare and aquaculture production. Never-
theless, concerns on fish welfare are low because, as mentioned
before, most actual DNA vaccines carry only a single viral gene and
therefore they are non-infectious and there is no risk of transferring
and disseminating the disease with the vaccine. As a consequence,
DNA vaccines are safer to the fish health than attenuated live
virus or even inactivated virus. Furthermore, fish DNA vaccines
do not require oil adjuvants, and therefore do not cause the post-
vaccination oil side effects which affect fish welfare. The other
safety concerns are mostly due to the distribution of the DNA vac-
cine after vaccination which depend on the delivery route. For
instance, after i.m. injection most of the DNA plasmid remains at
the injection site and the rest distributes to various fish tissues dis-
appearing shortly after vaccination but leaving small amounts of
long-term persisting DNA plasmid [104,163]. Although theoreti-
cal calculations suggest that the probability of integration of those
persisting amounts of DNA into the fish genome are smaller than

the chances of natural mutation, no detailed experimental esti-
mations are yet available. Nevertheless, controlling the fate of the
DNA (perhaps by including some special sequences to control DNA
stability out of the fish or with time), could have an important influ-
ence on whether Europeans perceive the risk as acceptable or not.
Although, even in small amounts, persisting DNA, might be sus-
ceptible for environmental release to the aquatic ecosystem or to
consumers eating the vaccinated fish, even smaller amounts are
likely to remain months or years later at the time of consump-
tion. Also, compared with the total amount of DNA in the food,
the persistent DNA will be a negligible amount. On the other hand,
no effects have been detected in human volunteers receiving mg
doses of plasmid DNA in previous safety tests [164].

Still other safety concerns might be originated by the presence
of the human cytomegalovirus (CMV) promoter to control expres-
sion of the viral protein in most of the actual plasmids used for fish
DNA vaccines, including the one approved against IHNV [104]. In
this regard, it might be expected that the use of control elements
(promoters and terminators) from fish origin (all-fish-plasmids)
could contribute to a more acceptable consumer alternative. As one
example of this alternative, the carp �-actin promoter has been
used to raise immunity against VHSV [165]. However, concerns are
also raised as to whether the use of fish sequences in DNA vac-
cines would increase the levels of homologous recombination and
thus their possible insertion into the fish genomes. To address this
former concern, enhancers and cores from several fish promoters
[166] are being combined to design new hybrid promoters (data not
published) in an attempt to reduce their possible genome insertion
probabilities while conserving the all-fish sequences. Alternatives
to replace terminators of mammalian or viral origin for those of fish
origin, are also being searched (data not published).

Finally, the commercialization of the IHNV DNA vaccine in
Canada is arguing for a similar use of a VHSV DNA vaccine in Europe.
Thus, after ∼5 years of use of the DNA vaccine for IHNV virus
approved for commercialization by the Canadian Food Inspection
Agency in July of 2005 [104], there have been no IHN epizootic or
negative safety issues to the fish or to the consumer. Because local
regulatory authorities were concerned with the potential impact to
the environment and to human consumers due to the novelty of the
technology [104], the persistence of the DNA plasmids in the i.m.
injected fish was studied before approval was granted. Among other
considerations, because laboratory-scale testing demonstrated 99%
reduction of plasmid copy numbers at the site of injection after
∼2 months, faster reduction rate in other tissues, lack of measur-
able DNA vaccine in gonadal tissue (suggesting a low probability of
germ-line transmission), and no adverse effects to salmon, the DNA
vaccine was approved. While the evidences mentioned above con-
vinced Canada authorities, those results have not been accepted in
Europe. Field-testing is still been performed for IHNV in Atlantic
salmon in Canada and for VHSV in Denmark during the latest
years, but no detailed reports have been yet published [159]. Those
ongoing studies will compare many different physiological and
immunological data in vaccinated and unvaccinated fish under field
conditions to provide further information on the safety of fish DNA
vaccines.

12. Conclusions

Intensive aquaculture is growing more rapidly than all other
food animal-producing sectors. To achieve higher levels of pro-
duction, their viral disease problems must be addressed, since
viral outbreaks cause high mortality, severe economical losses and
important ecological impacts. An intensive aquaculture, without
prevention of the spreading of the viruses they generate, will be
unsustainable [167]. However, there are not yet any effective treat-
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ments other than destroying all fish in infected farms, avoiding fish
movements to and from infected areas and, in some cases, vacci-
nation.

With the exception of DNA vaccination to novirhabdoviruses,
only viral infections, live attenuated and/or some oil-adjuvanted
whole virus vaccines, produced acceptable levels of reproducible
protection. The promising results obtained by DNA vaccination
to novirhabdoviruses indicate that this technology could also be
applied to other fish vaccines in the future, but at present, DNA vac-
cines have not been yet developed for other fish RNA viral diseases,
even at the laboratory scale. To achieve progress in this field, fur-
ther co-operation between more basic and applied science should
be encouraged (i.e., immunology and vaccinology). Thus, although
progress in the understanding of the fish immune systems, specially
on their cellular and mucosal immunities, has been addressed in
recent years by European community founded research, more stud-
ies and further connection with practical needs are still required.

To obtain similar protection levels than those stimulated by
whole viruses (live, attenuated or oil-adjuvanted), other spe-
cific viral components (dsRNA or viral proteins interfering with
fish defences) and/or molecular adjuvants, might have to be
included in new DNA vaccine formulations. On the other hand,
more suitable delivery methods need to be developed in order to
make vaccination of small fish economically feasible. Alternatively,
immunization of brood stocks to protect small fish might need to
be developed (for instance for VNNV or IPNV). Also, more studies
of crossprotection among different genotypes are needed to esti-
mate the needs for multivalent vaccines to protect to different local
variants in each viral specie since very few reports do exist on this
issue.

Ideal DNA vaccine formulations must not only avoid finfish
death and viral persistence in asymptomatic carriers, but also be
safe for the environment and human consumption [168]. Since, the
first focus of DNA vaccine researchers is to prove their efficacy,
aspects such as those mentioned above have been seldom included
perhaps due to the lack of negative impacts on environment or con-
sumers of the present oil-adjuvanted viral vaccines. In this respect,
although there are field tests going on by using present DNA vac-
cines driven by the CMV promoter, the use of alternative fish control
elements should also be considered. Finally, authorities and scien-
tists need to achieve better transparency of regulatory and safety
issues to inform consumers about the positive effects the use of
safer viral DNA vaccines might have in aquaculture.
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