Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

#$Id: traitedDockingParameters.py 258 2015-11-14 17:04:46Z sarkiss $ 

from enthought.traits.api import HasTraits, List, Trait, Int, Bool, Float, Enum, File, Str, TraitHandler 

from enthought.traits.ui.api import Item, Group, View, CheckListEditor, VGroup, HGroup, spring, EnumEditor 

from enthought.traits.ui.menu import LiveButtons, UndoButton, RevertButton, OKButton, CancelButton, HelpButton 

from AutoDockTools.DockingParameters import DockingParameters 

from miscTraits import PositiveInt, TraitPositiveInteger 

Buttons = [ UndoButton, RevertButton, OKButton, CancelButton ] 

class TraitedDockingParameters( HasTraits ): 

 

    dpo = DockingParameters() 

    randomLibraryTuple = ('Platform-Independent library', 'Built-In library') 

    randomLibrary = Trait( randomLibraryTuple[0], randomLibraryTuple[1]) 

 

    seedType1 = Trait('time', 'PID', 'custom') 

    seedType1.default_value(0,"PID") 

    seedType2 = Trait('time', 'PID', 'custom') 

 

    seedInt1 = PositiveInt() 

    seedInt2 = PositiveInt() 

 

 

    external_grid_energy = Float(dpo['extnrg']['value']) 

    e0max_0 = Float(dpo['e0max']['value'][0]) 

    e0max_1 = Trait(dpo['e0max']['value'][1], TraitPositiveInteger(), Int) 

    calculate_internal_electrostatic_energy = Bool(dpo['intelec']['value']) 

 

    dstep = Float(dpo['dstep']['value']) 

    try: 

        tstep = Float(dpo['tstep']['value'][0]) #TODO: remove this after PyRx 1.0 release 

    except: 

        tstep = Float(dpo['tstep']['value']) 

    qstep = Float(dpo['qstep']['value']) 

 

 

    outputLevelList = ["No output", "Minimal output", 

                        "Full state output at end of each cycle", 

                        "Detailed output for each step"] 

    # The view includes one group per column formation.  These will be displayed 

    # on separate tabbed panels. 

 

    outputLevelEnum = Enum(outputLevelList, editor = EnumEditor(values = outputLevelList, cols=1)) 

    outputLevelEnum.default_value = "Minimal output" 

 

    write_all_flag = Bool(dpo['write_all_flag']['value']) 

    analysis_flag = Bool(dpo['analysis']['value']) 

    rmstol = Float(dpo['rmstol']['value']) 

    rmsatoms = Enum("ligand only",'all') 

 

    rmsref = File 

 

    custom_parameter_file = Bool(dpo['custom_parameter_file']['value']) 

    parameter_file = File(dpo['parameter_file']['value']) 

 

 

    include_1_4_interactions_flag = Bool(dpo['include_1_4_interactions_flag']['value']) 

    include_1_4_interactions = Float(dpo['include_1_4_interactions']['value']) 

 

    unbound_model_flag = Bool(True) 

    unbound_model = Trait("bound", "extended") 

 

    epdb_flag =  Bool(dpo['epdb_flag']['value']) 

    epdb = File(dpo['epdb']['value']) 

 

 

    def __init__(self): 

        seedType1_group = HGroup(Item(name='seedType1', style='custom', show_label=False), 

                                Group(Item(name='seedInt1', show_label=False), 

                                      enabled_when='object.seedType1 == "custom"'), 

                            ) 

 

 

        seedType2_group = HGroup(Item(name='seedType2', style='custom', show_label=False), 

                                Group(Item(name='seedInt1', show_label=False), 

                                      enabled_when='object.seedType2 == "custom"'), 

                            visible_when = 'randomLibrary == "Platform-Independent library"', 

                            ) 

 

        seedsGroup = Group( seedType1_group, seedType2_group, 

                           show_border = True, 

                           label = 'Random Number Generator Seeds' 

                           ) 

 

 

        # CheckListEditor display with four columns 

        random_group = Group(Group( 

                              Item('randomLibrary', 

                                   style='custom',  show_label=False), 

                            seedsGroup, 

                            ), 

                            label='Random Numbers' 

                            ) 

 

        energy_group = Group( Item('external_grid_energy'), 

                              Item('e0max_0', label= "Maximum allowable energy to start a run"), 

                              Item('e0max_1', label="Maximum number of retries"), 

                              Item('calculate_internal_electrostatic_energy'), 

                              label='Energy Parameters', show_border = True, 

                            ) 

 

        step_group = Group( Item('tstep', label="Translation (Angstrom/step)"), 

                            Item('qstep', label="Quaternion (Degree/step)"), 

                            Item('dstep', label="Torsion (Degree/step)"), 

                              label='Step Size', show_border = True, 

                            ) 

 

        miscOutputGroup = Group(Item('analysis_flag', label = "Perform cluster analysis:"), 

                                 Item('write_all_flag', label = "Write all conformations in a cluster:"), 

                                 Item('rmstol', label = "RMS Cluster Tolerance (Angstrom):"), 

                                 Item(name='rmsatoms', style='custom', label="For RMS calculation use:"), 

                                 Item('rmsref',  label = 'Reference structure file for RMS'), 

                                 ) 

        output_group = VGroup( Item('outputLevelEnum', style='custom', show_label=False), 

                               miscOutputGroup, 

                              label='Output Options' 

                            ) 

 

        custom_parameter_group = Group(Item(name='custom_parameter_file', label = "Use custom parameter library"), 

           Item(name='parameter_file', enabled_when='object.custom_parameter_file')) 

 

        include_1_4_interactions_group = Group( 

           Item(name='include_1_4_interactions_flag', label='Include internal 1-4 interactions'), 

           Item(name='include_1_4_interactions', label='Scaling factor for 1-4 interactions', 

                enabled_when='object.include_1_4_interactions_flag'), 

                        ) 

 

 

#        unbound_group = Group(Item(name='unbound_model_flag', label = "Include unbound ligand energy"),  

#           Item(name='unbound_model', enabled_when='object.unbound_model_flag == True', label="Unbound ligand state"), 

#           label='Unbound Ligand Parameters', show_border = True, 

#           ) 

#         

 

        epdb_group = Group(Item(name='epdb_flag', label = "Compute binding energy without docking (epdb)"), 

               Item(name='epdb', enabled_when='object.epdb_flag', label = "Enter filename for epdb calculation")) 

 

 

        autodock4_specific_group = Group(custom_parameter_group, include_1_4_interactions_group, 

                                         epdb_group, 

                                         label='New in AutoDock 4.2' 

                                         ) 

 

        self.docking_parameters_group =  Group(  output_group, 

                       Group( 

                       energy_group, 

                       step_group, label="Energy and Steps"), 

                       random_group, 

                      autodock4_specific_group, 

                      layout='tabbed', 

                      label = 'Docking Parameters', 

                      ) 

 

        self.docking_parameters_view = View(  output_group, 

                       Group( 

                       energy_group, 

                       step_group, label="Energy and Steps"), 

                       random_group, 

                      autodock4_specific_group, 

                      title = 'AutoDock Parameters', buttons = Buttons 

                      ) 

 

    def _randomLibrary_changed(self, old, new): 

        if new == self.randomLibraryTuple[0]: 

            if self.seedType1 == 'custom': 

                seed1 = self.seedInt1 

            else: 

                seed1 = self.seedType1.lower() 

            if self.seedType2 == 'custom': 

                seed2 = self.seedInt2 

            else: 

                seed2 = self.seedType2.lower() 

            self.dpo['seed']['value'] = [seed1, seed2] 

        else: 

            if self.seedType1 == 'custom': 

                seed1 = self.seedInt1 

            else: 

                seed1 = self.seedType2.lower() 

            self.dpo['seed']['value'] = [seed1] 

 

    def _seedType1_changed(self): 

        self._randomLibrary_changed(None, self.randomLibrary) 

 

    def _seedType2_changed(self): 

        self._randomLibrary_changed(None, self.randomLibrary) 

 

    def _external_grid_energy_changed(self, new): 

        self.dpo['extnrg']['value'] = new 

 

    def _e0max_0_changed(self, new): 

        self.dpo['e0max']['value'][0] = new 

 

    def _e0max_1_changed(self, new): 

        self.dpo['e0max']['value'][1] = new 

 

    def _calculate_internal_electrostatic_energy_changed(self, new): 

        self.dpo['intelec']['value'] = new 

 

    def _dstep_changed(self, new): 

        self.dpo['dstep']['value'] = new 

 

    def _tstep_changed(self, new): 

        self.dpo['tstep']['value'] = [new] 

 

    def _qstep_changed(self, new): 

        self.dpo['qstep']['value'] = new 

 

    def _outputLevelEnum_changed(self, new): 

        index = self.outputLevelList.index(new) 

        self.dpo['outlev']['value'] = index 

 

    def _write_all_flag_changed(self, new): 

        self.dpo['write_all_flag']['value'] = new 

 

    def _analysis_changed(self, new): 

        self.dpo['analysis']['value'] = new 

 

    def _rmstol_changed(self, new): 

        self.dpo['rmstol']['value'] = new 

 

    def _rmsatoms_changed(self, new): 

        if new: 

            self.dpo['rmsatoms_flag']['value'] = True 

            self.dpo['rmsatoms']['value'] = new 

        else: 

            self.dpo['rmsatoms_flag']['value'] = False 

            self.dpo['rmsatoms']['value'] = new 

 

 

    def _custom_parameter_file_changed(self, new): 

        self.dpo['custom_parameter_file']['value'] = new 

 

    def _parameter_file_changed(self, new): 

        self.dpo['parameter_file']['value'] = new 

 

    def _include_1_4_interactions_flag_changed(self, new): 

        self.dpo['include_1_4_interactions_flag']['value'] = new 

 

    def _include_1_4_interactions_changed(self, new): 

        self.dpo['include_1_4_interactions']['value'] = new 

 

    def _unbound_model_flag_changed(self, new): 

        self.dpo['unbound_model_flag']['value'] = new 

 

    def _unbound_model_changed(self, new): 

        self.dpo['unbound_model']['value'] = new 

 

    def _epdb_flag_changed(self, new): 

        self.dpo['epdb_flag']['value'] = new 

 

    def _epdb_changed(self, new): 

        self.dpo['epdb']['value'] = new 

 

 

class TraitedGeneticAlgorithmParameters(TraitedDockingParameters): 

    ga_run = PositiveInt() 

    ga_pop_size = PositiveInt() 

    ga_num_evals = PositiveInt() 

    ga_evals_type = Trait('short', 'medium', 'long', 'custom') 

    ga_evals_type.default_value(0,"short") 

 

    ga_num_generations = PositiveInt() 

    ga_elitism = PositiveInt() 

    ga_mutation_rate = Float 

    ga_crossover_rate = Float 

    ga_crossover_mode = Enum('twopt', 'arithmetic', 'uniform') 

    ga_cauchy_alpha = Float 

    ga_cauchy_beta = Float 

    ga_window_size = Float 

    def __init__(self): 

        super(TraitedGeneticAlgorithmParameters, self).__init__() 

        self.ga_run = self.dpo['ga_run']['value'] 

        self.ga_pop_size = self.dpo['ga_pop_size']['value'] 

        self.ga_num_evals = 250000 #self.dpo['ga_num_evals']['value'] 

        self.ga_num_generations = self.dpo['ga_num_generations']['value'] 

        self.ga_elitism = self.dpo['ga_elitism']['value'] 

        self.ga_mutation_rate = self.dpo['ga_mutation_rate']['value'] 

        self.ga_crossover_rate = self.dpo['ga_crossover_rate']['value'] 

        self.ga_crossover_mode = self.dpo['ga_crossover_mode']['value'] 

        self.ga_cauchy_alpha = self.dpo['ga_cauchy_alpha']['value'] 

        self.ga_cauchy_beta = self.dpo['ga_cauchy_beta']['value'] 

        self.ga_window_size = self.dpo['ga_window_size']['value'] 

 

 

        ga_evals_group = HGroup(spring, Item(name='ga_evals_type', style='simple', label="Maximum number of energy evaluations"), 

                                Item(name='ga_num_evals', show_label=False, enabled_when='object.ga_evals_type == "custom"'), 

                                ) 

        self.genetic_algorithm_group = Group(Item(name='ga_run', label="Number of GA runs"), 

                                             Item(name='ga_pop_size', label="Number of individuals in population"), 

                                             #Item(name='ga_num_evals', label="Maximum number of energy evaluations"), 

                                             ga_evals_group, 

                                             Item(name='ga_num_generations', label="Maximum number of generations"), 

                                             Item(name='ga_elitism', label="Number of top individuals to survive to next generation"), 

                                             Item(name='ga_mutation_rate', label="Rate of gene mutation"), 

                                             Item(name='ga_crossover_rate', label="Rate of crossover"), 

                                             Item(name='ga_crossover_mode', label="GA crossover mode"), 

                                             Item(name="ga_cauchy_alpha", label="Mean of Cauchy distribution for gene mutation (Cauchy alpha)"), 

                                             Item(name="ga_cauchy_beta", label="Variance of Cauchy distribution for gene mutation (Cauchy beta)"), 

                                             Item(name='ga_window_size', label="Number of generations for picking worst individual (GA window size)"), 

                                             label = 'Genetic Algorithm Parameters', 

                                             ) 

        self.genetic_algorithm_view = View(self.genetic_algorithm_group, buttons = Buttons) 

 

    def _ga_run_changed(self, new): 

        self.dpo['ga_run']['value'] = new 

 

    def _ga_pop_size_changed(self, new): 

        self.dpo['ga_pop_size']['value'] = new 

 

    def _ga_num_evals_changed(self, new): 

        self.dpo['ga_num_evals']['value'] = new 

 

    def _ga_evals_type_changed(self, new): 

        if new == 'short': 

            self.ga_num_evals = 250000 

        elif new == 'medium': 

            self.ga_num_evals = 2500000 

        elif new == 'long': 

            self.ga_num_evals = 25000000 

 

    def _ga_num_generations_changed(self, new): 

        self.dpo['ga_num_generations']['value'] = new 

 

    def _ga_elitism_changed(self, new): 

        self.dpo['ga_elitism']['value'] = new 

 

    def _ga_mutation_rate_changed(self, new): 

        self.dpo['ga_mutation_rate']['value'] = new 

 

    def _ga_crossover_rate_changed(self, new): 

        self.dpo['ga_crossover_rate']['value'] = new 

 

    def _ga_cauchy_alpha_changed(self, new): 

        self.dpo['ga_cauchy_alpha']['value'] = new 

 

    def _ga_cauchy_beta_changed(self, new): 

        self.dpo['ga_cauchy_beta']['value'] = new 

 

    def _ga_window_size_changed(self, new): 

        self.dpo['ga_window_size']['value'] = new 

 

 

class TraitedSimulatedAnnealingParameters(TraitedDockingParameters): 

    runs = PositiveInt() 

    cycles = PositiveInt() 

    accs = PositiveInt() 

    rejs = PositiveInt() 

    select = Enum("Minimum state","Last state") 

    linear_schedule = Enum("Linear","Geometric") 

    trnrf = Float 

    quarf = Float 

    dihrf = Float 

    rtrf = Float 

    rt0 = Float 

    def __init__(self): 

        super(TraitedSimulatedAnnealingParameters, self).__init__() 

        self.runs = self.dpo['runs']['value'] 

        self.cycles = self.dpo['cycles']['value'] 

        self.accs = self.dpo['accs']['value'] 

        self.rejs = self.dpo['rejs']['value'] 

        self.trnrf = self.dpo['trnrf']['value'] 

        self.quarf = self.dpo['quarf']['value'] 

        self.dihrf = self.dpo['dihrf']['value'] 

        self.rtrf = self.dpo['rtrf']['value'] 

        self.rt0 = self.dpo['rt0']['value'] 

 

        #self.ga_pop_size =  

        self.simulated_annealing_group = Group(Item(name='runs', label="Number of runs"), 

                                             Item(name='cycles', label="Number of temperature reduction cycles"), 

                                             Item(name='accs', label="Maximum number of accepted steps per cycle"), 

                                             Item(name='rejs', label="Maximum number of rejected steps per cycle"), 

                                             Item(name='select', label="State selection for the next cycle", style='custom'), 

                                             Item(name='linear_schedule', label="Temperature reduction schedule type", style='custom'), 

                                             Item(name='trnrf', label="Per cycle reduction factor for translation"), 

                                             Item(name='quarf', label="Per cycle reduction factor for quaternion"), 

                                             Item(name='dihrf', label="Per cycle reduction factor for dihedral"), 

                                             Item(name='rtrf', label="Per cycle reduction factor for temperature"), 

                                             Item(name='rt0', label="Initial annealing temperature"), 

                                             label = 'Simulated Annealing Parameters', 

                                             ) 

 

        self.simulated_annealing_view = View(self.simulated_annealing_group, buttons = Buttons) 

 

    def _runs_changed(self, new): 

        self.dpo['runs']['value'] = new 

 

    def _cycles_changed(self, new): 

        self.dpo['cycles']['value'] = new 

 

    def _accs_changed(self, new): 

        self.dpo['accs']['value'] = new 

 

    def _rejs_changed(self, new): 

        self.dpo['rejs']['value'] = new 

 

    def _select_changed(self, new): 

        if new == "Minimum state": 

            self.dpo['select']['value'] = 'm' 

        else: 

            self.dpo['select']['value'] = 'l' #(l)ast state 

 

    def _linear_schedule_changed(self, new): 

        if new == "Linear": 

            self.dpo['linear_schedule']['value'] = 1 

        else: 

            self.dpo['linear_schedule']['value'] = 0 

 

    def _trnrf_changed(self, new): 

        self.dpo['trnrf']['value'] = new 

 

    def _quarf_changed(self, new): 

        self.dpo['quarf']['value'] = new 

 

    def _dihrf_changed(self, new): 

        self.dpo['dihrf']['value'] = new 

 

    def _rtrf_changed(self, new): 

        self.dpo['rtrf']['value'] = new 

 

    def _rt0_changed(self, new): 

        self.dpo['rt0']['value'] = new 

 

 

class TraitedLocalSearchParameters(TraitedDockingParameters): 

    do_local_only = PositiveInt() 

    sw_max_its = PositiveInt() 

    sw_max_succ = PositiveInt() 

    sw_max_fail = PositiveInt() 

    sw_rho = Float 

    sw_lb_rho = Float 

    ls_search_freq = Float 

    sw_type = Enum("Uniform","Relative") 

 

    def __init__(self): 

        super(TraitedLocalSearchParameters, self).__init__() 

        self.do_local_only = self.dpo['do_local_only']['value'] 

        self.sw_max_its = self.dpo['sw_max_its']['value'] 

        self.sw_max_succ = self.dpo['sw_max_succ']['value'] 

        self.sw_max_fail = self.dpo['sw_max_fail']['value'] 

        self.sw_rho = self.dpo['sw_rho']['value'] 

        self.sw_lb_rho = self.dpo['sw_lb_rho']['value'] 

        self.ls_search_freq = self.dpo['ls_search_freq']['value'] 

 

        #self.ga_pop_size =  

        self.local_search_group = Group(Item(name='do_local_only', label="Number of LS runs"), 

                                             Item(name='sw_max_its', label="Maximum number of iterations"), 

                                             Item(name='sw_max_succ', label="Maximum number of successes in a row before changing rho"), 

                                             Item(name='sw_max_fail', label="Maximum number of failures in a row before changing rho"), 

                                             Item(name='sw_rho', label="Solis and Wets parameter defining initial variance \nand size of local space to sample (rho)"), 

                                             Item(name='sw_lb_rho', label="Lower bound on rho"), 

                                             Item(name='ls_search_freq', label="Probability of any particular phenotype being\nsubjected to local search"), 

                                             Item(name='sw_type', label="Solis and Wets variances", style='custom'), 

                                             label = 'Local Search Parameters', 

                                             ) 

 

        self.local_search_view = View(self.local_search_group, buttons = Buttons) 

 

    def _do_local_only_changed(self, new): 

        self.dpo['do_local_only']['value'] = new 

 

    def _sw_max_its_changed(self, new): 

        self.dpo['sw_max_its']['value'] = new 

 

    def _sw_max_succ_changed(self, new): 

        self.dpo['sw_max_succ']['value'] = new 

 

    def _sw_max_fail_changed(self, new): 

        self.dpo['sw_max_fail']['value'] = new 

 

    def _sw_rho_changed(self, new): 

        self.dpo['sw_rho']['value'] = new 

 

    def _sw_lb_rho_changed(self, new): 

        self.dpo['sw_lb_rho']['value'] = new 

 

    def _dihrf_changed(self, new): 

        self.dpo['dihrf']['value'] = new 

 

    def _rtrf_changed(self, new): 

        self.dpo['rtrf']['value'] = new 

 

    def _rt0_changed(self, new): 

        self.dpo['rt0']['value'] = new 

 

    def _sw_type_changed(self, new): 

        if new == "Uniform": 

            self.dpo['set_sw1']['value'] = 1 

            self.dpo['set_psw1']['value'] = 0 

        else: 

            self.dpo['set_sw1']['value'] = 0 

            self.dpo['set_psw1']['value'] = 1 

 

class TraitedLamarckianGAParameters(TraitedGeneticAlgorithmParameters, TraitedLocalSearchParameters): 

    pass 

 

import  wx 

class BookDialog(wx.Dialog): 

    def __init__(self, parent, parameters, title): 

        wx.Dialog.__init__(self, parent, -1, title) 

        sizer = wx.BoxSizer(wx.VERTICAL) 

        self.book = wx.Treebook(self, -1, style= 

                            wx.BK_DEFAULT 

                            #wx.BK_TOP 

                            #wx.BK_BOTTOM 

                            #wx.BK_LEFT 

                            #wx.BK_RIGHT 

                            ) 

        sizer.Add(self.book) 

        self.pages = [] 

        self.parameters = parameters 

        self.sizer = sizer 

 

    def finish_layout(self): 

        line = wx.StaticLine(self, -1, size=(20,-1), style=wx.LI_HORIZONTAL) 

        self.sizer.Add(line, 0, wx.GROW|wx.ALIGN_CENTER_VERTICAL, 5) 

 

        self.okButton = wx.Button(self, wx.ID_OK, "") 

        self.cancelButton = wx.Button(self, wx.ID_CANCEL, "") 

        buttonSizer = wx.BoxSizer(wx.HORIZONTAL) 

        lin = wx.StaticLine(self) 

        buttonSizer.Add((10, -1), 1, flag=wx.EXPAND | wx.ALIGN_RIGHT) 

        buttonSizer.Add(self.okButton, 0, wx.ALIGN_RIGHT|wx.ALL, 5) 

        buttonSizer.Add(self.cancelButton, 0, wx.ALIGN_RIGHT|wx.ALL, 5) 

        self.sizer.Add(lin,0,wx.EXPAND) 

        self.sizer.Add(buttonSizer, 0, wx.EXPAND|wx.ALIGN_BOTTOM) 

 

        self.SetSizer(self.sizer) 

        self.sizer.Fit(self) 

        self.Bind(wx.EVT_BUTTON, self._on_ok, self.okButton) 

        self.Bind(wx.EVT_BUTTON, self._on_cancel, self.cancelButton) 

 

 

    def _on_error(self, errors): 

        """ Handles editing errors. 

        """ 

        self.okButton.Enable(errors == 0) 

 

    def _on_ok(self, event=None): 

        """ Handles the user clicking the **OK** button. 

        """ 

        for page in self.pages: 

            if page.handler.close(page.info, True): 

                page.finish() 

        self.EndModal(wx.ID_OK) 

 

 

    def _on_cancel (self, event): 

        """ Handles a request to cancel all changes. 

        """ 

        for page in self.pages: 

            page.handler.close(page.info, False) 

            page.finish() 

        self.EndModal(wx.ID_CANCEL) 

 

class GeneticAlgorithmParametersGUI(BookDialog): 

    def __init__(self, parent, parameters): 

        BookDialog.__init__(self, parent, parameters, 'Genetic Algorithm Parameters') 

 

        page1 = parameters.genetic_algorithm_view.ui(parameters, self.book, kind='subpanel') 

        page1.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page1) 

        self.book.AddPage(page1.control, "Genetic Algorithm") 

 

        page2 = parameters.docking_parameters_view.ui(parameters, self.book, kind='subpanel') 

        page2.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page2) 

        self.book.AddPage(page2.control, "Docking Parameters") 

        self.finish_layout() 

 

class SimulatedAnnealingParametersGUI(BookDialog): 

    def __init__(self, parent, parameters): 

        BookDialog.__init__(self, parent, parameters, 'Simulated Annealing Parameters') 

 

        page1 = parameters.simulated_annealing_view.ui(parameters, self.book, kind='subpanel') 

        page1.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page1) 

        self.book.AddPage(page1.control, "Simulated Annealing") 

 

        page2 = parameters.docking_parameters_view.ui(parameters, self.book, kind='subpanel') 

        page2.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page2) 

        self.book.AddPage(page2.control, "Docking Parameters") 

        self.finish_layout() 

 

class LocalSearchParametersGUI(BookDialog): 

    def __init__(self, parent, parameters): 

        BookDialog.__init__(self, parent, parameters, 'Local Search Parameters') 

        page1 = parameters.local_search_view.ui(parameters, self.book, kind='subpanel') 

        page1.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page1) 

 

        self.book.AddPage(page1.control, "Local Search") 

        page2 = parameters.docking_parameters_view.ui(parameters, self.book, kind='subpanel') 

        page2.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page2) 

        self.book.AddPage(page2.control, "Docking Parameters") 

        self.finish_layout() 

 

class LamarckianGAParametersGUI(BookDialog): 

    def __init__(self, parent, parameters): 

        BookDialog.__init__(self, parent, parameters, 'Lamarckian Genetic Algorithm Parameters') 

        page1 = parameters.genetic_algorithm_view.ui(parameters, self.book, kind='subpanel') 

        page1.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page1) 

        self.book.AddPage(page1.control, "Genetic Algorithm") 

 

        page2 = parameters.local_search_view.ui(parameters, self.book, kind='subpanel') 

        page2.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page2) 

        self.book.AddPage(page2.control, "Local Search") 

 

        page3 = parameters.docking_parameters_view.ui(parameters, self.book, kind='subpanel') 

        page3.on_trait_change( self._on_error, 'errors', dispatch = 'ui' ) 

        self.pages.append(page3) 

        self.book.AddPage(page3.control, "Docking Parameters") 

        self.finish_layout() 

 

#TODO: pass file to configure_traits to save the state 

 

if __name__ == "__main__": 

    demo = TraitedDockingParameters() 

    demo.configure_traits(view=demo.docking_parameters_view)