PyMol Tutorial

What are we going to cover

- Brief overview of the program
- Quick introduction to the basic features
- Just enough to get you started ...
- You need to spend "hands on" time getting to know the program

Introduction to PyMol

- What is pymol for?
- Looking at pdb files (protein, nucleic acid, ligands, etc.)
- Making publication quality figures (of models and maps)
- NOT for model building
- Where can I get it?
- pymol.sourceforge.net
- Current version: 0.99
- pymol.sourceforge.net/html/ -for the manual
- Other important links
- www.rcsb.org
- 144.16.71.146/rp
- www.igs.cnrs-mrs.fr/Caspr2/RMSDcalc.cgi

Protein data bank
Ramachandran plotting tool
Structure alignment site (RMSD calc)

Starting the program

- Locate the application icon and click on it.
- For windows users look under the program files section of the windows start menu
- Use the PyMol + Tck-TK GUI +console icon
- You should see a command window and a graphics window

Part 1 - loading, moving and displaying

- How do I?
- Load a pdb file
- Change display settings
- Create an object
- Use the mouse to move, zoom, slab, rotate
- Use the object menus: A, S, H, L, C
- Navigate contextual menus
- Display the sequence
- Select residues
- Save my work

How do I load a PDB file

- Download a pdb file directly into pymol
- Make sure you are connected to the internet
- Plugin > PDB loader service
- Typew in the PDB ID (e.g. 1AB9)
- Object appears with this PDB ID

$\bigcirc \bigcirc \bigcirc \mid$ PDB Loader Service

Please enter a 4-digit pdt code:

- Load a "local" pdb file
- File > Open ...
- Select a pdb file
- Object appears with the same name as the pdb file

Useful display settings

- Display > Background > white --- set the background colour
- Display > orthoscopic view --- no perspective distortion

Creating new objects

- To create an object containing just chain A of 1AB9
- Type in command (or graphics window): create D, (1AB9 and c;d)

Using the mouse in the graphics window

- Unmodified controls
- Left - rotate molecule (x, y and, at edges, z)
- Middle - translate molecule (x, y)
- Right - zoom (= Move Z)
- Wheel-slab/clip

Menu at bottom right

- With shift key
- Right -up/down: clip front
- left/right: clip back

Object menus: A, S, H, L, C

A is for Action

Navigation Tools
Analysis tools

NB: some of these have sub-menus

Ell
 A|S|H|L|C

Object manipulation
cfhsa-dz Actions:

```
zoom
orient
center
origin
drag
preset.
find
    align
    generate
    assign sec. struc.
    rename object
    duplicate object
delete object
hydrogens
remove waters
state
masking
sequence
movement
compute
```


S is for Show

Useful representations

all	A 5	-	C
dfhsa-dzp	Show:		
	as		
$\{$	lines sticks ribbon cartoon		
	label cell		
$\{$	nonbonded dots spheres nb_spheres		
	mesh surface		
	organic main chain side chain disulfides		

H is for Hide

Same content as Show menu

Use Show and Hide to toggle things on and off

L is for Label

Useful for keeping track of key residues

all	A \mid S	$H\|L\| C$
dfhsa-dzp	Hide: everything	
lines sticks ribbon cartoon		
label cell		
nonbonded dots spheres nb_spheres		
mesh surface		
main chain side chain waters		
hydrogens		
unselected		

C is for Color

Lots of options
Mostly self-explanatory
Color menu gives names of ready-made colors that can be used in scripts

Display the sequence

From menu:
Display > sequence

Or

Click on "S" in the mouse menu

Use the sequence to Select residues for Modification

Access menus from the sequence

Contextual menus

- Left double click or right single click to activate
- Click on an object or part of an object you want to manipulate
- More or less the same menus as ASHLC
\qquad

The Settings menu

Settings > edit all ...

Lots of options!
Make educated guesses and see what happens

00	X Settings		
Double click to edit			
active_selections all_states ambient angle_label_position angle_size animation animation_duration antialias async_builds atom_name_wildoard auto_classify_atoms auto_color auto_cts auto_hide_selections auto_indicate_flags auto_rumber_selections auto_remove_hydrogens auto_soulpt auto_show_lines auto_show_nonbonded auto_show_selections auto_show_spheres auto_zoom hanlfano mill	on off $0+14000$ $0+50000$ $0+66660$ on 0.75000 1 off on on on on off off off off off on off off 0 on		
Edit		Done	

Saving your work

File > save session ...
Enter filename as "file.pse"
Will save all your current settings (display objects, maps, etc.)

When you return to PyMol, load this file:

File > Open

Part 2 - Structural analysis

- Selection syntax
- Displaying Biochemical Properties
- Selecting secondary structues
- Calculating dihedral angles
- Polar Contacts and Hydrogen-bonding
- Alignment of two or more structures

Selection syntax

resi 99-105 residues 99-105 inclusive
($\mathrm{i} ; 99: 105$) ($\mathrm{i}=$ residue id number)
resn tyr
(r;tyr)
resn tyr or resn phe
r;tyr+phe

Chain A	chain A
$(\mathrm{c} ; \mathrm{a})$	$(\mathrm{c}=$ chain $)$

Name N $(n ; N)$	all atoms named "N" (=main-chain nitrogen) $(n=$ atom name)
$(n ; C A)$	all atoms named "CA" (=alpha carbon) (get to know the atom names in pdb files)
$(n ; c+0+n+c a)$	all backbone atoms
$(n ; c, o, n, c a)$	all backbone atoms
Elem C	all carbon atoms
$(e ; C)$	$(e=$ element)

Selection Algebra

Operator	Short Form	Effect
not s1	!s1	Selects atoms that are not in object s1
s1 and s2	s1 \& s2	Selects atoms included in both s1 and s2
s1 or s2	s1\|s2	Selects atoms included in either s1 or s2
s1 around X	s1 a. X	Selects atoms with centers within X Angstroms of the center of any atom in s1
s1 expand X	s1 e. X	Expands s1 by all atoms within X Angstroms of the center of any atom in s1
s1 within X of s2	s1 w. X of s2	Selects atoms in s1 that are within X Angstroms of s2
neighbor s1	nbr. s1	Selects atoms directly bonded to s1

Atom Selection Macros

- Macros make it possible to represent a long atom selection phrase such as:
select 1AB9 and segi PROB and chain B and resi 35 and name ca
In a more compact form

select /1AB9/PROB/b/35/ca

/object-name/segi-identifierlchain-identifierlresi-identifierlnameidentifier

If you do not need one to these identifiers, just leave that space blank
select /1AB9//b/35/ca

Displaying Biochemical Properties

- Selecting secondary structues
- Select helix, (ss h)
- Select sheet, (ss s)
- Select loop, (ss l+"")
- Manually assigning secondary structure
- alter 11-40/, ss=‘S'
- alter 11-40/, ss='H'
- alter 11-40/, ss=‘L’
to set residues 11-40 to beta strand, alpha helix, and loop respectively

Measurement Wizard

wizard > measurement

- Pretty much self explanatory
- Select measurement mode from pull-down menu
- Use the mouse to pick the atoms involved in the distance, angle or torsion angle you are interested in as prompted in the upper left hand corner of the graphics window
- When finished, click done

Calculating dihedral angles

- The get_dihedral function requires four single-atom selections to work:
get_dihedral 1AB9//B/16/c,1AB9//B/17/n, 1AB9//B/17/ca, 1AB9//B/17/c
Returns the phi angle for residue 17 in chain B of 1AB9

For the psi angle you would use $N_{i}, C A_{i}, C_{i}, N_{i+1}$
get_dihedral 1AB9//B/17/n,1AB9//B/17/ca, 1AB9//B/17/c, 1AB9//B/18/n

- Alternatively you can use the measurement tool under the
 wizard tab and manually select the four atoms involved in each dihedral

Polar Contacts

- Using the PyMol menus one may display Polar Contacts. These are defined as

```
set h_bond_cutoff_center, 3.6
    with ideal geometry and
set h_bond_cutoff_edge, 3.2
    with minimally acceptable geometry
```

- These settings can be changed *before* running the detection process

Hydrogen-bonding

- Easy Hydrogen Bonds
dist name, s1, s2, mode=2
- More complicated Hydrogen Bonds -
h_add 1AB9
select protein, chain A or chain B or chain C
select substrate, chain D
select don, (elem $\mathrm{n}+\mathrm{o}$ and (neighbor hydro))
select acc, (elem o or (elem n and not (neighbor hydro)))
dist HBA, (substrate and acc), (protein and don), 3.2
dist HBD, (substrate and don), (protein and acc), 3.2
delete don
delete acc
hide (hydro)

Structural Alignment

- Requires at least 2 structures to be loaded into pymol align 1NES, 1AB9
- PyMol will first do a sequence alignment and then try to align the structures to minimize the RMSD between the aligned residues
- When the alignment runs it will print out some information:

```
Match: read scoring matrix.
Match: assigning 388 x 370 pairwise scores.
MatchAlign: aligning residues (388 vs 370)...
ExecutiveAlign: }1393\mathrm{ atoms aligned.
ExecutiveRMS: 68 atoms rejected during cycle 1 (RMS=2.34).
ExecutiveRMS: 82 atoms rejected during cycle 2 (RMS=1.41).
Executive: RMS = 1.095 (1243 to 1243 atoms)
```

- Restricting the alignment
- Alignment of just the backbone atom
align 1 NES and name $n+c a+c+o, 1$ AB9 and name $n+c a+c+o$
- For more difficult alignments try RMSD calc website

